Source code for metawards.app.run

#!/bin/env python3
"""
The metawards command line program.

Usage:
    To get the help for this program and the list of all of the
    arguments (with defaults) use;

    metawards --help
"""

__all__ = ["get_parallel_scheme", "parse_args", "get_hostfile",
           "get_cores_per_node", "get_threads_per_task",
           "scoop_supervisor", "mpi_supervisor",
           "cli"]


def get_parallel_scheme():
    """This function tries to work out which of the different parallel
       methods we should use to distribute work between multiple processes.

       Detected schemes are "mpi4py", "scoop", and if none of these
       are found, then "multiprocessing"
    """
    import sys

    if "mpi4py" in sys.modules:
        return "mpi4py"
    elif "scoop" in sys.modules:
        return "scoop"
    else:
        return "multiprocessing"


[docs]def parse_args(): """Parse all of the command line arguments""" import configargparse import sys metawards_url = "https://metawards.org" configargparse.init_argument_parser( name="main", description=f"MetaWards epidemic modelling - see " f"{metawards_url} for more information.", prog="metawards") parser = configargparse.get_argument_parser("main") parser.add_argument('--version', action="store_true", default=None, help="Print the version information about metawards") parser.add_argument('-c', '--config', is_config_file=True, help="Config file that can be used to set some " "or all of these command line options.") parser.add_argument('-i', '--input', type=str, help="Input file for the simulation that specifies " "the adjustable parameters to change for each " "run of the model. You must supply some " "input to run a model!") parser.add_argument('-l', '--line', type=str, default=None, nargs="*", help="Line number (or line numbers) containing the " "values of adjustable parameters to run for this " "run (or runs) of the model If this isn't " "specified then model runs will be performed " "for adjustable parameters given on all lines " "from the input file. You can specify many " "numbers, and ranges are also accepted, e.g. " "'-l 5 6-10 12,13,14' etc. Note that the line " "numbers are 0-indexed, e.g. the first line of " "the file is line 0. Ranges are inclusive, " "so 3-5 is the same as 3 4 5") parser.add_argument("-r", '--repeats', type=int, default=None, nargs="*", help="The number of repeat runs of the model to " "perform for each value of the adjustable " "parameters. By default only a single " "run will be performed for each set of " "adjustable parameters. This complements the " "'repeat' column in the input file (in which " "case the repeats are multipled). Also, " "multiple repeat values can be given, in which " "case each value corresponds to a different " "line in the input file") parser.add_argument('-s', '--seed', type=int, default=None, help="Random number seed for this run " "(default is to use a random seed)") parser.add_argument('-a', '--additional', type=str, default=None, nargs="*", help="File (or files) containing additional " "seed of outbreak for the model. These are " "used to seed additional infections on " "specific days at different locations " "during a model run") parser.add_argument('-o', '--output', type=str, default=None, help="Path to the directory in which to place all " "output files (default 'output'). This " "directory will be subdivided if multiple " "adjustable parameter sets or repeats " "are used.") parser.add_argument('-d', '--disease', type=str, default=None, help="Name of the disease to model " "(default is 'ncov')") parser.add_argument('-m', '--model', type=str, default=None, help="Name of the input model data set for the " "network (default is '2011Data')") parser.add_argument('-D', '--demographics', type=str, default=None, help="Name of the demographics file that provides " "information about how a population is modelled " "as multiple demographics. If this is not " "supplied then the population is modelled " "as a single demographic") parser.add_argument('--start-date', type=str, default=None, help="Date of the start of the model outbreak. " "This accepts dates either is iso-format, " "or fuzzy dates such as 'monday', 'tomorrow' " "etc. This is used to work out which days " "are weekends, or to make it easier to specify " "time-based events.") parser.add_argument('--start-day', type=int, default=None, help="The start day of the model outbreak. By " "default the model outbreak starts on day " "zero (0), with each step of the model " "representing an additional day. Use this " "to start from a later day, which may be " "useful if you want to more quickly reach " "time based events. Note that the passed " "'--start-date' is always day 0, so day 10 " "has a date which is 10 days after start-date") parser.add_argument('-p', '--parameters', type=str, default=None, help="Name of the input parameter set used to " "control the simulation (default 'march29')") parser.add_argument('-R', '--repository', type=str, default=None, help="Path to the MetaWardsData repository. If " "unspecified this defaults to the value " "in the environment variable METAWARDSDATA " "or, if that isn't specified, to " "$HOME/GitHub/MetaWardsData", env_var="METAWARDSDATA") parser.add_argument('-P', '--population', type=int, default=None, help="Initial population (default 1000)") parser.add_argument('-n', '--nsteps', type=int, default=None, help="Maximum number of steps (days) to run for the " "simulation. Each step represents one day in the " "outbreak (default is to run for a maximum " "of two years - 730 days)") parser.add_argument('-u', '--user-variables', type=str, default=None, help="Name of the file containing user-defined " "custom variables. These provide extra " "information that can be read by the " "custom integrators or custom extractors.") parser.add_argument('--iterator', type=str, default=None, help=f"Name of the iterator to use to advance the " f"outbreak at each step (day). For a full " f"explanation see the tutorial at " f"{metawards_url}") parser.add_argument("--extractor", type=str, default=None, help=f"Name of the extractor to use to extract " f"information during a model run. For a full " f"explanation see the tutorial at " f"{metawards_url}") parser.add_argument("--mixer", type=str, default=None, help=f"Name of the mixer to use to mix information " f"from multiple demographics together during " f"a model run. For a full explanation see " f"the tutorial at {metawards_url}") parser.add_argument("--mover", type=str, default=None, help=f"Name of the mover to use to move the " f"population between demographics during " f"a model run. For a full explanation see " f"the tutorial at {metawards_url}") parser.add_argument("--star-is-E", action="store_true", default=None, help=f"Set the state 0 (* state) as an extra latent " f"state, as opposed to an extra R state") parser.add_argument("--star-is-R", action="store_true", default=None, help=f"Set the state 0 (* state) as an extra R " f"state (the default). Individuals in this " f"state are calculated as 'R', even though " f"they will progress on the next day to the " f"E state") parser.add_argument("--disable-star", action="store_true", default=None, help=f"Disable the * state. Now state 0 is the first " f"and only latent state. There is no star state.") parser.add_argument('--UV', type=float, default=None, help="Value for the UV parameter for the model " "(default is 0.0)") parser.add_argument('--UV-max', type=str, default=None, help="Date when the seasonal adjustment should be at " "its maximum. By default, this is January 1st " "on the assumption that disease spread is " "stronger in the (Northern) winter") parser.add_argument('--theme', type=str, default=None, help=f"The theme to use to color the output. " f"Use '--theme simple' if you prefer a " f"simple and colorless output.") parser.add_argument('--no-spinner', action="store_true", default=None, help=f"Disable the spinner that spins when little " f"output is being printed to the screen.") parser.add_argument('--no-progress', action="store_true", default=None, help=f"Disable the progress bars that show progress.") parser.add_argument("--debug", action="store_true", default=None, help=f"Enable debugging output. This is useful " f"for MetaWards developers or if you are " f"writing your own iterators, extractors etc.") parser.add_argument("--debug-level", type=int, default=None, help="Limit debug output to the specified level.") parser.add_argument("--outdir-scheme", type=str, default=None, help="Set the naming scheme for output directory " "names for multiple model runs. Options are " "either 'fingerprint' to use the model " "fingerprint, 'sequential' for sequential " "numbering, or 'uid' to generate a unique ID.") parser.add_argument('--nthreads', type=int, default=None, help="Number of threads over which parallelise an " "individual model run. The total number of " "cores used by metawards will be " "nprocesses x nthreads", env_var="OMP_NUM_THREADS") parser.add_argument("--nprocs", type=int, default=None, help="The number of processes over which to " "parallelise the different model runs for " "different adjustable parameter sets and " "repeats. By default this will automatically " "work out the number of processes based on " "the way metawards is launched. Use this " "option if you want to specify the number " "of processes manually.") parser.add_argument('--hostfile', type=str, default=None, help="The hostfile containing the names of the " "compute nodes over which to run a parallel " "job. If this is not set, the program will " "attempt to automatically get this information " "from the cluster queueing system. Use this " "if the auto-detection fails") parser.add_argument('--cores-per-node', type=int, default=None, help="Set the number of processor cores available " "on each of the compute nodes in the cluster " "that will be used to run the models " "(if a cluster is used). If this is not " "set then the program will attempt to " "get this information from the cluster " "queueing system. Use this option if the " "auto-detection fails.") parser.add_argument('--auto-bzip', action="store_true", default=None, help="Automatically bz2 compress " "all output files as they are written.") parser.add_argument('--no-auto-bzip', action="store_true", default=None, help="Do not automatically bz2 compress " "all output files as they are written.") parser.add_argument('--force-overwrite-output', action="store_true", default=False, help="Whether or not to force overwriting of any " "existing output. Using this option will " "tell metawards that it is safe to delete " "the contents of the output directory " "specified in by '--output' if it already " "exists. Dangerous as this can remove " "existing output files") parser.add_argument('--max-nodes', type=int, default=None, help="Maximum number of nodes that can be read") parser.add_argument('--max-links', type=int, default=None, help="Maximum number of links that can be read") parser.add_argument('--profile', action="store_true", default=None, help="Enable profiling of the code") parser.add_argument('--no-profile', action="store_true", default=None, help="Disable profiling of the code") parser.add_argument('--mpi', action="store_true", default=None, help="Force use of MPI to parallelise across runs") parser.add_argument('--scoop', action="store_true", default=None, help="Force use of scoop to parallelise across runs") # this hidden option is used to tell the main process started using # mpi that it shouldn't try to become a supervisor parser.add_argument('--already-supervised', action="store_true", default=None, help=configargparse.SUPPRESS) args = parser.parse_args() if args.theme: from ..utils._console import Console Console.set_theme(args.theme) if args.no_spinner: from ..utils._console import Console Console.set_use_spinner(False) if args.no_progress: from ..utils._console import Console Console.set_use_progress(False) if args.debug: from ..utils._console import Console Console.set_debugging_enabled(args.debug, level=args.debug_level) if args.version: from metawards import print_version_string print_version_string() sys.exit(0) return (args, parser)
def get_hostfile(args): """Attempt to find the name of the hostfile used to specify the hosts to use in a cluster """ if args.hostfile: return args.hostfile import os # PBS hostfile = os.getenv("PBS_NODEFILE") if hostfile: return hostfile # SLURM hostfile = os.getenv("SLURM_HOSTFILE") if hostfile: return hostfile return None def get_cores_per_node(args): """Return the number of cores per node in the cluster""" if args.cores_per_node: return args.cores_per_node import os try: cores_per_node = int(os.getenv("METAWARDS_CORES_PER_NODE")) if cores_per_node > 0: return cores_per_node except Exception: pass raise ValueError("You must specify the number of cores per node " "using --cores-per-node or by setting the " "environment variable METAWARDS_CORES_PER_NODE")
[docs]def get_threads_per_task(args): if args.nthreads: return args.nthreads import os try: nthreads = int(os.getenv("METAWARDS_THREADS_PER_TASK")) if nthreads > 0: return nthreads nthreads = int(os.getenv("OMP_NUM_THREADS")) if nthreads > 0: return nthreads except Exception: pass raise ValueError("You must specify the number of threads per task " "using --nthreads or by setting the " "environment variables METAWARDS_THREADS_PER_TASK " "or OMP_NUM_THREADS")
[docs]def scoop_supervisor(hostfile, args): """Function used by the scoop supervisor to get the information needed to form the scoop call to run a scoop version of the program """ import os import sys from metawards.utils import Console Console.print("RUNNING A SCOOP PROGRAM") cores_per_node = get_cores_per_node(args) Console.print( f"Will run jobs assuming {cores_per_node} cores per compute node") # based on the number of threads requested and the number of cores # per node, we can work out the number of scoop processes to start, # and can write a hostfile that will create the right layout nthreads = get_threads_per_task(args) Console.print(f"Will use {nthreads} OpenMP threads per model run...") tasks_per_node = int(cores_per_node / nthreads) Console.print(f"...meaning that the number of model runs per node will be " f"{tasks_per_node}") # Next, read the hostfile to get a unique list of hostnames hostnames = {} with open(hostfile, "r") as FILE: line = FILE.readline() while line: hostname = line.strip() if len(hostname) > 0: hostnames[hostname] = 1 line = FILE.readline() hostnames = list(hostnames.keys()) hostnames.sort() Console.print(f"Number of compute nodes equals {len(hostnames)}") Console.print(", ".join(hostnames)) # how many tasks can we perform in parallel? nprocs = tasks_per_node * len(hostnames) if args.nprocs: if nprocs != args.nprocs: Console.warning( f"You are using a not-recommended number of " f"processes {args.nprocs} for the cluster {nprocs}.") nprocs = args.nprocs Console.print( f"Total number of parallel processes to run will be {nprocs}") Console.print(f"Total number of cores in use will be {nprocs*nthreads}") # Now write a new hostfile that round-robins the MPI tasks over # the nodes for 'tasks_per_node' runs hostfile = f"_metawards_hostfile_{os.getpid()}" Console.print(f"Writing hostfile to {hostfile}") with open(hostfile, "w") as FILE: i = 0 while i < nprocs: for hostname in hostnames: FILE.write(hostname + "\n") i += 1 if i == nprocs: break # now craft the scoop command that will use this hostfile to # run the job - remember to pass the option to stop the main process # attempting to become a supervisor itself... import subprocess import shlex pyexe = sys.executable script = os.path.abspath(sys.argv[0]) args = " ".join(sys.argv[1:]) # also need to tell the main program the number of processes # as it can't work it out itself cmd = f"{pyexe} -m scoop --hostfile {hostfile} -n {nprocs} " \ f"{script} --already-supervised {args} --nprocs {nprocs}" Console.print("Executing scoop job using") Console.command(cmd) try: args = shlex.split(cmd) subprocess.run(args).check_returncode() except Exception as e: Console.error("ERROR: Something went wrong!") Console.error(f"{e.__class__}: {e}") sys.exit(-1) # clean up the hostfile afterwards... (we leave it if something # went wrong as it may help debugging) os.unlink(hostfile) Console.print("Scoop processes completed successfully")
[docs]def mpi_supervisor(hostfile, args): """Function used by the MPI supervisor to get the information needed to form the mpiexec call to run an MPI version of the program """ import os import sys from metawards.utils import Console Console.print("RUNNING AN MPI PROGRAM") cores_per_node = get_cores_per_node(args) Console.print( f"Will run jobs assuming {cores_per_node} cores per compute node") # based on the number of threads requested and the number of cores # per node, we can work out the number of mpi processes to start, # and can write a hostfile that will create the right layout nthreads = get_threads_per_task(args) Console.print(f"Will use {nthreads} OpenMP threads per model run...") tasks_per_node = int(cores_per_node / nthreads) Console.print(f"...meaning that the number of model runs per node will be " f"{tasks_per_node}") # Next, read the hostfile to get a unique list of hostnames hostnames = {} with open(hostfile, "r") as FILE: line = FILE.readline() while line: hostname = line.strip() if len(hostname) > 0: hostnames[hostname] = 1 line = FILE.readline() hostnames = list(hostnames.keys()) hostnames.sort() Console.print(f"Number of compute nodes equals {len(hostnames)}") Console.print(", ".join(hostnames)) # how many tasks can we perform in parallel? nprocs = tasks_per_node * len(hostnames) if args.nprocs: if nprocs != args.nprocs: Console.print(f"WARNING: You are using an unrecommended number of " f"processes {args.nprocs} for the cluster {nprocs}.") nprocs = args.nprocs Console.print( f"Total number of parallel processes to run will be {nprocs}") Console.print(f"Total number of cores in use will be {nprocs*nthreads}") # Now write a new hostfile that round-robins the MPI tasks over # the nodes for 'tasks_per_node' runs hostfile = f"_metawards_hostfile_{os.getpid()}" Console.print(f"Writing hostfile to {hostfile}") with open(hostfile, "w") as FILE: i = 0 while i < nprocs: for hostname in hostnames: FILE.write(hostname + "\n") i += 1 if i == nprocs: break # now craft the mpiexec command that will use this hostfile to # run the job - remember to pass the option to stop the main process # attempt to become a supervisor itself... mpiexec = os.getenv("MPIEXEC") if mpiexec is None: mpiexec = "mpiexec" # check for weird mpiexecs... import subprocess import shlex try: args = shlex.split(f"{mpiexec} -v") p = subprocess.run(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) v = p.stdout.decode("utf-8").strip() Console.print(f"{mpiexec} -v => {v}") if v.find("HPE HMPT") != -1: raise ValueError( "metawards needs a more modern MPI library than HPE's, " "so please compile to another MPI and use that.") except Exception as e: Console.error(f"[ERROR] {e.__class__} {e}") pyexe = sys.executable script = os.path.abspath(sys.argv[0]) args = " ".join(sys.argv[1:]) cmd = f"{mpiexec} -np {nprocs} -hostfile {hostfile} " \ f"{pyexe} -m mpi4py {script} --already-supervised {args} " \ f"--nprocs {nprocs}" Console.print("Executing MPI job using") Console.command(cmd) try: args = shlex.split(cmd) subprocess.run(args).check_returncode() except Exception as e: Console.error("ERROR: Something went wrong!") Console.error(f"{e.__class__}: {e}") sys.exit(-1) # clean up the hostfile afterwards... (we leave it if something # went wrong as it may help debugging) os.unlink(hostfile) Console.print("MPI processes completed successfully")
def cli(): """Main function for the command line interface. This does one of three things: 1. If this is the main process, then it parses the arguments and runs and manages the jobs 2. If this is a worker process, then it starts up and waits for work 3. If this is a supervisor process, then it query the job scheduling system for information about the compute nodes to use, and will then set up and run a manager (main) process that will use those nodes to run the jobs """ from metawards.utils import Console # get the parallel scheme now before we import any other modules # so that it is clear if mpi4py or scoop (or another parallel module) # has been imported via the required "-m module" syntax parallel_scheme = get_parallel_scheme() if parallel_scheme == "mpi4py": from mpi4py import MPI comm = MPI.COMM_WORLD nprocs = comm.Get_size() rank = comm.Get_rank() if rank != 0: # this is a worker process, so should not do anything # more until it is given work in the pool Console.print(f"Starting worker process {rank+1} of {nprocs-1}...") return else: Console.print("Starting main process...") elif parallel_scheme == "scoop": Console.print("STARTING SCOOP PROCESS") else: # Multiprocessing import multiprocessing as _mp try: # needed to stop OpenMP hang on Linux with libgomp _mp.set_start_method("spawn") _mp.freeze_support() # needed to stop fork bombs except Exception: pass _method = _mp.get_start_method() if _method != "spawn": _error = \ f"We need to run with multiprocessing in 'spawn' mode, " \ f"else this will cause deadlocks with OpenMP. The mode " \ f"'{_method}' is thus not supported!" Console.error(_error) raise AssertionError(_error) import sys args, parser = parse_args() if not args.already_supervised: hostfile = get_hostfile(args) if hostfile: # The user has asked to run a parallel job - this means that this # process is the parallel supervisor if args.mpi: mpi_supervisor(hostfile, args) return elif args.scoop: scoop_supervisor(hostfile, args) return # neither is preferred - if scoop is installed then use that try: import scoop # noqa - disable unused warning have_scoop = True except Exception: have_scoop = False if have_scoop: scoop_supervisor(hostfile, args) return # do we have MPI? try: import mpi4py # noqa - disable unused warning have_mpi4py = True except Exception: have_mpi4py = False if have_mpi4py: mpi_supervisor(hostfile, args) return # we don't have any other option, just keep going and # use multiprocessing - in this case we don't need a # supervisor and this is the main process # This is now the code for the main process # WE NEED ONE OF these listed options; should_run = False for arg in [args.input, args.repeats, args.disease, args.additional, args.model, args.iterator, args.extractor, args.demographics, args.mixer, args.mover]: if arg is not None: should_run = True break if not should_run: parser.print_help(sys.stdout) sys.exit(0) if args.repeats is None: args.repeats = [1] # import the parameters here to speed up the display of help from metawards import Parameters, Network, Population, print_version_string # print the version information first, so that there is enough # information to enable someone to reproduce this run print_version_string() Console.rule("Initialise") if args.input: # get the line numbers of the input file to read if args.line is None or len(args.line) == 0: linenums = None Console.print(f"* Using parameters from all lines of {args.input}", markdown=True) else: from metawards.utils import string_to_ints linenums = string_to_ints(args.line) if len(linenums) == 0: Console.error(f"You cannot read no lines from {args.input}?") sys.exit(-1) elif len(linenums) == 1: Console.print(f"* Using parameters from line {linenums[0]} of " f"{args.input}", markdown=True) else: Console.print(f"* Using parameters from lines {linenums} of " f"{args.input}", markdown=True) from metawards import VariableSets, VariableSet variables = VariableSets.read(filename=args.input, line_numbers=linenums) else: from metawards import VariableSets, VariableSet # create a VariableSets with one null VariableSet variables = VariableSets() variables.append(VariableSet()) nrepeats = args.repeats if nrepeats is None or len(nrepeats) < 1: nrepeats = [1] if len(nrepeats) > 1 and len(variables) != len(nrepeats): Console.error(f"The number of repeats {len(nrepeats)} must equal the " f"number of adjustable variable lines {len(variables)}") raise ValueError("Disagreement in the number of repeats and " "adjustable variables") # ensure that all repeats are >= 0 nrepeats = [0 if int(x) < 0 else int(x) for x in nrepeats] if sum(nrepeats) == 0: Console.error(f"The number of the number of repeats is 0. Are you " f"sure that you don't want to run anything?") raise ValueError("Cannot run nothing") if len(nrepeats) == 1 and nrepeats[0] == 1: Console.print("* Performing a single run of each set of parameters", markdown=True) elif len(nrepeats) == 1: Console.print( f"* Performing {nrepeats[0]} runs of each set of parameters", markdown=True) else: Console.print( f"* Performing {nrepeats} runs applied to the parameters", markdown=True) variables = variables.repeat(nrepeats) if args.outdir_scheme is None: outdir_scheme = "fingerprint" else: outdir_scheme = args.outdir_scheme.lower().strip() if outdir_scheme == "fingerprint": Console.print( "* Naming output subdirectories using a run's fingerprint", markdown=True ) elif outdir_scheme == "sequential": Console.print( "* Naming output subdirectories using a sequential scheme", markdown=True ) variables.set_outdir_from_number() elif outdir_scheme == "uid": Console.print( "* Nameing output subdirectories using a unique ID", markdown=True ) variables.set_outdir_from_uid() else: Console.error(f"Unrecognised outdir naming scheme '{outdir_scheme}'") raise ValueError(f"Unrecognised scheme '{outdir_scheme}'") # working out the number of processes and threads... from metawards.utils import guess_num_threads_and_procs (nthreads, nprocs) = guess_num_threads_and_procs( njobs=len(variables), nthreads=args.nthreads, nprocs=args.nprocs, parallel_scheme=parallel_scheme) Console.print( f"\n* Number of threads to use for each model run is {nthreads}", markdown=True) if nprocs > 1: Console.print(f"* Number of processes used to parallelise model " f"runs is {nprocs}", markdown=True) Console.print( f"* Parallelisation will be achieved using {parallel_scheme}", markdown=True) # sort out the random number seed seed = args.seed if seed is None: import random seed = random.randint(10000, 99999999) if seed == 0: # this is a special mode that a developer can use to force # all jobs to use the same random number seed (15324) that # is used for comparing outputs. This should NEVER be used # for production code Console.warning("Using special mode to fix all random number" "seeds to 15324. DO NOT USE IN PRODUCTION!!!") # get the starting day and date if args.start_day is None: start_day = 0 else: start_day = int(args.start_day) if start_day < 0: raise ValueError(f"You cannot use a start day {start_day} that is " f"less than zero!") start_date = None if args.start_date: try: from .._interpret import Interpret start_date = Interpret.date(args.start_date) except Exception: pass if start_date is None: from datetime import date try: start_date = date.fromisoformat(args.start_date) except Exception as e: raise ValueError( f"Cannot interpret a valid date from " f"'{args.start_date}'. Error is " f"{e.__class__} {e}") if start_date is None: from datetime import date start_date = date.today() Console.print(f"* Day zero is {start_date.strftime('%A %B %d %Y')}", markdown=True) if start_day != 0: from datetime import timedelta start_day_date = start_date + timedelta(days=start_day) Console.print(f"Starting on day {start_day}, which is " f"{start_day_date.strftime('%A %B %d %Y')}") else: start_day_date = start_date # now find the MetaWardsData repository as this will be needed # for the repeat command line too (repository, repository_version) = Parameters.get_repository( args.repository) Console.print(f"* Using MetaWardsData at {repository}", markdown=True) if repository_version["is_dirty"]: Console.warning("This repository is dirty, meaning that the data" "has not been committed to git. This may make " "this calculation very difficult to reproduce") # now work out the minimum command line needed to repeat this job args.seed = seed args.nprocs = nprocs args.nthreads = nthreads args.start_date = start_date.isoformat() args.repository = repository # also print the source of all inputs import configargparse Console.rule("Souce of inputs") p = configargparse.get_argument_parser("main") Console.print(p.format_values()) # print out the command used to repeat this job repeat_cmd = "metawards" for key, value in vars(args).items(): if value is not None: k = key.replace("_", "-") if isinstance(value, bool): if value: repeat_cmd += f" --{k}" elif isinstance(value, list): repeat_cmd += f" --{k}" for val in value: v = str(val) if " " in v: repeat_cmd += f" '{v}''" else: repeat_cmd += f" {v}" else: v = str(value) if " " in v: repeat_cmd += f" --{k} '{v}''" else: repeat_cmd += f" --{k} {v}" Console.rule("Repeating this run") Console.print("To repeat this job use the command;") Console.command(repeat_cmd) Console.print("Or alternatively use the config.yaml file that will be " "written to the output directory and use the command;") Console.command("metawards -c config.yaml") # load all of the parameters if args.parameters is None: params = Parameters.default() else: try: params = Parameters.load(parameters=args.parameters) except Exception as e: Console.warning( f"Unable to load parameter files. Make sure that you have " f"cloned the MetaWardsData repository and have set the " f"environment variable METAWARDSDATA to point to the " f"local directory containing the repository, e.g. the " f"default is $HOME/GitHub/MetaWardsData") raise e # should we profile the code? (default no as it prints a lot) profiler = None if args.no_profile: profiler = None elif args.profile: from metawards.utils import Profiler profiler = Profiler() # load the disease and starting-point input files if args.disease: params.set_disease(args.disease) else: params.set_disease("ncov") if args.model: params.set_input_files(args.model) else: params.set_input_files("2011Data") Console.rule("Parameters") # load the user-defined custom parameters if args.user_variables: Console.rule("Custom parameters and seeds") custom = VariableSet.read(args.user_variables) Console.print(f"Adjusting variables to {custom}") custom.adjust(params) # read the additional seeds for additional in [] if args.additional is None else args.additional: Console.print(f"Loading additional seeds from {additional}") params.add_seeds(additional) # what to do with the 0 state? stage_0 = "R" if args.disable_star: Console.print("Disabling the * state. Stage 0 is the one and " "only E state.") stage_0 = "disable" elif args.star_is_E: Console.print("Setting the * state as an additional E state.") stage_0 = "E" else: Console.print("Setting the * state as an additional R state.") stage_0 = "R" params.stage_0 = stage_0 # extra parameters that are set if args.UV is None: params.UV = 0.0 else: params.UV = float(args.UV) if args.UV_max is None: from datetime import date # default to January 1st of the starting year params.UV_max = date(day=1, month=1, year=start_day_date.year) else: try: # is this a day number? from datetime import timedelta UV_max = start_day_date + timedelta(days=int(args.UV_max)) except Exception: UV_max = None if UV_max is None: try: from .._interpret import Interpret UV_max = Interpret.date(args.UV_max) except Exception: UV_max = None if UV_max is None: from datetime import date try: UV_max = date.fromisoformat(args.UV_max) except Exception as e: raise ValueError( f"Cannot interpret a valid date from " f"'{args.UV_max}'. Error is " f"{e.__class__} {e}") params.UV_max = UV_max # set these extra parameters to 0 params.static_play_at_home = 0 params.play_to_work = 0 params.work_to_play = 0 params.daily_imports = 0.0 Console.print(params, markdown=True) # the size of the starting population if args.population is None: population = 1000 else: population = int(args.population) population = Population(initial=population, date=start_day_date, day=start_day) if args.max_nodes is None: max_nodes = 16384 else: max_nodes = int(args.max_nodes) if args.max_links is None: max_links = 4194304 else: max_links = int(args.max_links) if args.demographics: from metawards import Demographics Console.rule("Building the demographic networks") demographics = Demographics.load(args.demographics) Console.print(demographics) network = demographics.build(params=params, population=population, max_nodes=max_nodes, max_links=max_links, profiler=profiler, nthreads=nthreads) else: Console.rule("Model") Console.print(params.input_files, markdown=True) Console.rule("Disease") Console.print(params.disease_params, markdown=True) Console.rule("Building the network") network = Network.build(params=params, population=population, max_nodes=max_nodes, max_links=max_links, profiler=profiler, nthreads=nthreads) from metawards import OutputFiles from metawards.utils import run_models if args.output is None: outdir = "output" else: outdir = args.output if args.force_overwrite_output: prompt = None else: from metawards import input def prompt(x): return input(x, default="y") auto_bzip = True if args.auto_bzip: auto_bzip = True elif args.no_auto_bzip: auto_bzip = False if args.iterator: iterator = args.iterator else: iterator = None if args.extractor: extractor = args.extractor else: extractor = None if args.mixer: mixer = args.mixer else: mixer = None if args.mover: mover = args.mover else: mover = None if args.nsteps is None: nsteps = 730 else: nsteps = int(args.nsteps) Console.rule("Preparing the output directory") with OutputFiles(outdir, force_empty=args.force_overwrite_output, auto_bzip=auto_bzip, prompt=prompt) as output_dir: # write the config file for this job to output/config.yaml CONSOLE = output_dir.open("console.log") Console.rule("Preparing to run") Console.save(CONSOLE) lines = [] max_keysize = None for key, value in vars(args).items(): if max_keysize is None: max_keysize = len(key) elif len(key) > max_keysize: max_keysize = len(key) for key, value in vars(args).items(): if value is not None: key = key.replace("_", "-") spaces = " " * (max_keysize - len(key)) if isinstance(value, bool): if value: lines.append(f"{key}:{spaces} true") else: lines.append(f"{key}:{spaces} false") elif isinstance(value, list): s_value = [str(x) for x in value] lines.append(f"{key}:{spaces} [ {', '.join(s_value)} ]") else: lines.append(f"{key}:{spaces} {value}") CONFIG = output_dir.open("config.yaml", auto_bzip=False) lines.sort(key=str.swapcase) CONFIG.write("\n".join(lines)) CONFIG.write("\n") CONFIG.flush() CONFIG.close() lines = None result = run_models(network=network, variables=variables, population=population, nprocs=nprocs, nthreads=nthreads, seed=seed, nsteps=nsteps, output_dir=output_dir, iterator=iterator, extractor=extractor, mixer=mixer, mover=mover, profiler=profiler, parallel_scheme=parallel_scheme) if result is None or len(result) == 0: Console.print("No output - end of run") return 0 Console.rule("End of the run", style="finish") Console.save(CONSOLE) return 0 if __name__ == "__main__": import multiprocessing multiprocessing.freeze_support() # needed to stop fork bombs try: # needed to stop OpenMP hang on Linux with libgomp multiprocessing.set_start_method("spawn") except Exception: pass method = multiprocessing.get_start_method() if method != "spawn": from ..utils._console import Console error = f"We need to run with multiprocessing in 'spawn' mode, " \ f"else this will cause deadlocks with OpenMP. The mode " \ f"'{method}' is thus not supported!" Console.error(error) raise AssertionError(error) cli()