Named Disease Stages

In the last section you learned how to use demographics with different disease stages to model hospital and ICU admissions. While this worked, the calculation of statistics from the simulation was slightly hacky, as the disease stages were still labelled E, I and R, when we really wanted to refer to them as H1, H2 etc.

Fortunately, metawards supports custom naming of disease stages. You can do this by adding a stage field to the disease file.

Simple example

For example, here is a simple disease file that uses stages A, B and C. Please create the file named.json and copy in the below;

{
    "stage"            : [ "A", "B", "C" ],
    "beta"             : [ 0.0, 0.5, 0.0 ],
    "progress"         : [ 1.0, 1.0, 0.0 ],
    "too_ill_to_move"  : [ 0.0, 0.0, 0.0 ],
    "contrib_foi"      : [ 1.0, 1.0, 0.0 ],
    "start_symptom"    : 1
}

Note

Note that we’ve not included the name, author or other metadata fields as these are not needed for this simple example. These are optional fields. We recommend you include them when you want to publish a disease file.

This file defines three disease stages, called A, B and C. The first stage (A) is not infectious, as beta["A"] is 0.0. The infectious stage is B, as beta["B"] is 0.5. The final stage is C, which is not infectious, and is where the disease ends (progress["C"] is 0.0).

Run metawards using this disease file via;

metawards -a ExtraSeedsLondon.dat -d named.json --nsteps 20

You should see output similar to;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Loading additional seeds from /Users/chris/GitHub/MetaWardsData/extra_seeds/ExtraSeedsLondon.dat
(1, 255, 5, None)
S: 56082077  A: 0  B: 0  C: 0  IW: 0  POPULATION: 56082077

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
seeding play_infections[0][255] += 5
S: 56082072  A: 0  B: 5  C: 0  IW: 0  POPULATION: 56082077
Number of infections: 5

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082067  A: 5  B: 0  C: 5  IW: 2  POPULATION: 56082077
Number of infections: 10

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082067  A: 0  B: 5  C: 5  IW: 0  POPULATION: 56082077
Number of infections: 10

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 4 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082063  A: 4  B: 0  C: 10  IW: 3  POPULATION: 56082077
Number of infections: 14

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082063  A: 0  B: 4  C: 10  IW: 0  POPULATION: 56082077
Number of infections: 14

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082062  A: 1  B: 0  C: 14  IW: 1  POPULATION: 56082077
Number of infections: 15

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 7 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082062  A: 0  B: 1  C: 14  IW: 0  POPULATION: 56082077
Number of infections: 15

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082062  A: 0  B: 0  C: 15  IW: 0  POPULATION: 56082077
Number of infections: 15

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 9 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082062  A: 0  B: 0  C: 15  IW: 0  POPULATION: 56082077
Number of infections: 15

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 10 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082062  A: 0  B: 0  C: 15  IW: 0  POPULATION: 56082077
Number of infections: 15

Note

Note that the simulation gets stuck in the C state. This is because any individual who is not in S or R is counted as an infection, and so the 15 individuals in C are counted as infecteds. To prevent the model running forever we set the maximum number of days to 20 via --nsteps 20.

As you can see, the output now records movement from S to A, B and then C. This data is also recorded in the output files, e.g.

>> import pandas as pd
>> df = pd.read_csv("output/results.csv.bz2")
>> df.head()
   fingerprint  repeat  day        date         S  E  I  A  B   C  R  IW   UV
 0      REPEAT       1    0  2020-06-23  56082077  0  0  0  0   0  0   0  1.0
 1      REPEAT       1    1  2020-06-24  56082072  0  0  0  5   0  0   0  1.0
 2      REPEAT       1    2  2020-06-25  56082067  0  0  5  0   5  0   2  1.0
 3      REPEAT       1    3  2020-06-26  56082067  0  0  0  5   5  0   0  1.0
 4      REPEAT       1    4  2020-06-27  56082063  0  0  4  0  10  0   3  1.0
>> df = pd.read_csv("output/trajectory.csv.bz2")
>> df.head()
    day        date demographic         S  E  I  A  B   C  R  IW
 0    0  2020-06-23     overall  56082077  0  0  0  0   0  0   0
 1    1  2020-06-24     overall  56082072  0  0  0  5   0  0   0
 2    2  2020-06-25     overall  56082067  0  0  5  0   5  0   2
 3    3  2020-06-26     overall  56082067  0  0  0  5   5  0   0
 4    4  2020-06-27     overall  56082063  0  0  4  0  10  0   3

Additional columns have been added to the tables in these files for the A, B and C states.

Sub-stages example

You can have multiple named sub-stages of each stage, e.g. instead of having a single infectious B stage, you can have B1, B2 and B3. The totals reported for a the B stage will be the sum of the number of individuals in each sub-stage. For example, edit named.json to read;

{
    "stage"            : [ "A", "B1", "B2", "B3", "C" ],
    "beta"             : [ 0.0, 0.2,  0.8,  0.1,  0.0 ],
    "progress"         : [ 1.0, 1.0,  1.0,  1.0,  0.0 ],
    "too_ill_to_move"  : [ 0.0, 0.0,  0.2,  0.8,  0.0 ],
    "contrib_foi"      : [ 1.0, 1.0,  1.0,  1.0,  0.0 ],
    "start_symptom"    : 1
}

Here we’ve expanded the B stage into three infectious sub-stages (B1, B2 and B3), similar to the three stages of the lurgy.

Run metawards using this disease file via;

metawards -a ExtraSeedsLondon.dat -d named.json --nsteps 20

You should see in the output that the population of A, B and C are summarised, e.g.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Loading additional seeds from /Users/chris/GitHub/MetaWardsData/extra_seeds/ExtraSeedsLondon.dat
(1, 255, 5, None)
S: 56082077  A: 0  B: 0  C: 0  IW: 0  POPULATION: 56082077

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
seeding play_infections[0][255] += 5
S: 56082072  A: 0  B: 5  C: 0  IW: 0  POPULATION: 56082077
Number of infections: 5

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082071  A: 1  B: 5  C: 0  IW: 1  POPULATION: 56082077
Number of infections: 6

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082067  A: 4  B: 6  C: 0  IW: 4  POPULATION: 56082077
Number of infections: 10

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 4 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082066  A: 1  B: 5  C: 5  IW: 1  POPULATION: 56082077
Number of infections: 11

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082064  A: 2  B: 6  C: 5  IW: 2  POPULATION: 56082077
Number of infections: 13

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082060  A: 4  B: 7  C: 6  IW: 4  POPULATION: 56082077
Number of infections: 17

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 7 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082058  A: 2  B: 7  C: 10  IW: 2  POPULATION: 56082077
Number of infections: 19

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082053  A: 5  B: 8  C: 11  IW: 4  POPULATION: 56082077
Number of infections: 24

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 9 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082053  A: 0  B: 11  C: 13  IW: 0  POPULATION: 56082077
Number of infections: 24

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 10 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082049  A: 4  B: 7  C: 17  IW: 4  POPULATION: 56082077
Number of infections: 28

These are also summarised in the output/results.csv.bz2 and output/trajectory.csv.bz2 files.

However, the actual populations in each individual stage are given in the play_infections.csv.bz2 (play infections), work_infections.csv.bz2 (work infections) and number_infected_wards.csv.bz2 (number of infected wards) files, e.g.

>>> import pandas as pd
>>> df = pd.read_csv("output/total_infections.csv.bz2")
>>> df.head()
    day  A  B1  B2  B3  C
 0    1  0   5   0   0  0
 1    2  1   0   5   0  0
 2    3  4   1   0   5  0
 3    4  1   4   1   0  5
 4    5  2   1   4   1  5
>>> df = pd.read_csv("output/number_infected_wards.csv.bz2")
>>> df.head()
    day  A  B1  B2  B3  C
 0    1  0   1   0   0  0
 1    2  1   0   1   0  0
 2    3  4   1   0   1  0
 3    4  1   4   1   0  1
 4    5  2   1   4   1  1

These files are very useful if you want to see, e.g. how many workers are infected at each different stage on each day, or how many wards have a population infected in the B1 state on each day.

Scanning named stage parameters

You can also use the name of a stage when scanning disease parameters. For example, create a file called scan.dat and copy in the below;

beta["B1"]  beta["B2"]
  0.2         0.7
  0.3         0.8

Hopefully you can see that this will adjust the beta parameters for the B1 and B2 stages. You can run this file using;

metawards -a ExtraSeedsLondon.dat -d named.json --nsteps 20 -i scan.dat

and should see that the specified variables are indeed scanned, e.g.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Adjustable parameters to scan ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

• (beta["B1"]=0.2, beta["B2"]=0.7)[repeat 1]
• (beta["B1"]=0.3, beta["B2"]=0.8)[repeat 1]

[...]

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ MULTIPROCESSING ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Computing model run ✔
┌────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│                                                                                                            │
│  Completed job 1 of 2                                                                                      │
│  (beta["B1"]=0.2, beta["B2"]=0.7)[repeat 1]                                                                │
│  2020-07-13: DAY: 20  S: 56081987  A: 6  B: 21  C: 63  IW: 6  UV: 1.0  TOTAL POPULATION 56082077           │
│                                                                                                            │
└────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
Computing model run ✔
┌────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│                                                                                                            │
│  Completed job 2 of 2                                                                                      │
│  (beta["B1"]=0.3, beta["B2"]=0.8)[repeat 1]                                                                │
│  2020-07-13: DAY: 20  S: 56081794  A: 47  B: 93  C: 143  IW: 43  UV: 1.0  TOTAL POPULATION 56082077        │
│                                                                                                            │
└────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

Mapping stages to summaries

By default, the population of a disease sub-stage is summed into a summary value that has the same name (but missing the sub-stage number). So B1, B2 and B3 sub-stages will accumulate into the B stage.

You can control this mapping via the mapping value in the disease file. You can set a disease stage to map to any individual stage (e.g. you could map B1 to be B1 only), to any grouped stage (e.g. you could map C to map to the grouped B stage), or to any of the standard mapped stages (E, I, R or *).

For example, you could output every stage to the summary via;

{
    "stage"            : [ "A", "B1", "B2", "B3", "C" ],
    "mapping"          : [ "A", "B1", "B2", "B3", "C" ],
    "beta"             : [ 0.0, 0.2,  0.8,  0.1,  0.0 ],
    "progress"         : [ 1.0, 1.0,  1.0,  1.0,  0.0 ],
    "too_ill_to_move"  : [ 0.0, 0.0,  0.2,  0.8,  0.0 ],
    "contrib_foi"      : [ 1.0, 1.0,  1.0,  1.0,  0.0 ],
    "start_symptom"    : 1
}

Running metawards using this file will tell it to output every stage, e.g.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Loading additional seeds from /Users/chris/GitHub/MetaWardsData/extra_seeds/ExtraSeedsLondon.dat
(1, 255, 5, None)
S: 56082077  A: 0  B1: 0  B2: 0  B3: 0  C: 0  IW: 0  POPULATION: 56082077

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
seeding play_infections[0][255] += 5
S: 56082072  A: 0  B1: 5  B2: 0  B3: 0  C: 0  IW: 0  POPULATION: 56082077
Number of infections: 5

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082068  A: 4  B1: 0  B2: 5  B3: 0  C: 0  IW: 4  POPULATION: 56082077
Number of infections: 9

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082064  A: 4  B1: 4  B2: 0  B3: 5  C: 0  IW: 3  POPULATION: 56082077
Number of infections: 13

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 4 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082061  A: 3  B1: 4  B2: 4  B3: 0  C: 5  IW: 3  POPULATION: 56082077
Number of infections: 16

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082056  A: 5  B1: 3  B2: 4  B3: 4  C: 5  IW: 4  POPULATION: 56082077
Number of infections: 21

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082046  A: 10  B1: 5  B2: 3  B3: 4  C: 9  IW: 9  POPULATION: 56082077
Number of infections: 31

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 7 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082044  A: 2  B1: 10  B2: 5  B3: 3  C: 13  IW: 2  POPULATION: 56082077
Number of infections: 33

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082036  A: 8  B1: 2  B2: 10  B3: 5  C: 16  IW: 8  POPULATION: 56082077
Number of infections: 41

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 9 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082018  A: 18  B1: 8  B2: 2  B3: 10  C: 21  IW: 14  POPULATION: 56082077
Number of infections: 59

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 10 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082010  A: 8  B1: 18  B2: 8  B3: 2  C: 31  IW: 8  POPULATION: 56082077
Number of infections: 67

Alternatively, you can map your named stages to standard named accumulators, e.g.

{
    "stage"            : [ "A", "B1", "B2", "B3", "C" ],
    "mapping"          : [ "E", "I",  "I",  "I",  "R" ],
    "beta"             : [ 0.0, 0.2,  0.8,  0.1,  0.0 ],
    "progress"         : [ 1.0, 1.0,  1.0,  1.0,  0.0 ],
    "too_ill_to_move"  : [ 0.0, 0.0,  0.2,  0.8,  0.0 ],
    "contrib_foi"      : [ 1.0, 1.0,  1.0,  1.0,  0.0 ],
    "start_symptom"    : 1
}

would count A as a latent E stage, B1 to B3 would be infected I stages, and C would be accumulated as a R stage.

Running with this file would give;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Loading additional seeds from /Users/chris/GitHub/MetaWardsData/extra_seeds/ExtraSeedsLondon.dat
(1, 255, 5, None)
S: 56082077  E: 0  I: 0  R: 0  IW: 0  POPULATION: 56082077

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
seeding play_infections[0][255] += 5
S: 56082072  E: 0  I: 5  R: 0  IW: 0  POPULATION: 56082077
Number of infections: 5

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082072  E: 0  I: 5  R: 0  IW: 0  POPULATION: 56082077
Number of infections: 5

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082068  E: 4  I: 5  R: 0  IW: 4  POPULATION: 56082077
Number of infections: 9

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 4 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082068  E: 0  I: 4  R: 5  IW: 0  POPULATION: 56082077
Number of infections: 4

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082068  E: 0  I: 4  R: 5  IW: 0  POPULATION: 56082077
Number of infections: 4

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082064  E: 4  I: 4  R: 5  IW: 4  POPULATION: 56082077
Number of infections: 8

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 7 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082064  E: 0  I: 4  R: 9  IW: 0  POPULATION: 56082077
Number of infections: 4

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082064  E: 0  I: 4  R: 9  IW: 0  POPULATION: 56082077
Number of infections: 4

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 9 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082062  E: 2  I: 4  R: 9  IW: 2  POPULATION: 56082077
Number of infections: 6

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Day 10 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
S: 56082061  E: 1  I: 2  R: 13  IW: 1  POPULATION: 56082077
Number of infections: 3

while the original stage names are still accessible in the output/total_infections.csv.bz2, output/number_wards_infected.csv.bz2 files etc.

One advantage of doing this is that now, C is correctly interpreted as an R state, and so metawards will exit correctly once the outbreak has died out and all individuals are left in S or C.